Profiling single nucleotide polymorphisms (SNPs) across intracellular folate metabolic pathway in healthy Indians

نویسندگان

  • Yogita Ghodke
  • Arvind Chopra
  • Pooja Shintre
  • Amrutesh Puranik
  • Kalpana Joshi
  • Bhushan Patwardhan
چکیده

BACKGROUND & OBJECTIVES Many pharmacologically-relevant polymorphisms show variability among different populations. Though limited, data from Caucasian subjects have reported several single nucleotide polymorphism (SNPs) in folate biosynthetic pathway. These SNPs may be subjected to racial and ethnic differences. We carried out a study to determine the allelic frequencies of these SNPs in an Indian ethnic population. METHODS Whole blood samples were withdrawn from 144 unrelated healthy subjects from west India. DNA was extracted and genotyping was performed using PCR-RFLP and Real-time Taqman allelic discrimination for 12 polymorphisms in 9 genes of folate-methotrexate (MTX) metabolism. RESULTS Allele frequencies were obtained for MTHFR 677T (10%) and 1298 C (30%), TS 3UTR 0bp (46%), MDR1 3435T and 1236T (62%), RFC1 80A (57%), GGH 401T (61%), MS 2756G (34%), ATIC 347G (52%) and SHMT1 1420T (80%) in healthy subjects (frequency of underlined SNPs were different from published study data of European and African populations). INTERPRETATION & CONCLUSIONS The current study describes the distribution of folate biosynthetic pathway SNPs in healthy Indians and validates the previous finding of differences due to race and ethnicity. Our results pave way to study the pharmacogenomics of MTX in the Indian population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes

It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...

متن کامل

Single Nucleotide Polymorphisms and Association Studies: A Few Critical Points

Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...

متن کامل

Single Nucleotide Polymorphisms of One-Carbon Metabolism and Cancers of the Esophagus, Stomach, and Liver in a Chinese Population

One-carbon metabolism (folate metabolism) is considered important in carcinogenesis because of its involvement in DNA synthesis and biological methylation reactions. We investigated the associations of single nucleotide polymorphisms (SNPs) in folate metabolic pathway and the risk of three GI cancers in a population-based case-control study in Taixing City, China, with 218 esophageal cancer cas...

متن کامل

Using a Bayesian Hierarchical Model for Identifying Single Nucleotide Polymorphisms Associated with Childhood Acute Lymphoblastic Leukemia Risk in Case-Parent Triads

Childhood acute lymphoblastic leukemia (ALL) is a condition that arises from complex etiologies. The absence of consistent environmental risk factors and the presence of modest familial associations suggest ALL is a complex trait with an underlying genetic component. The identification of genetic factors associated with disease is complicated by complex genetic covariance structures and multipl...

متن کامل

Diet-gene interactions underlie metabolic individuality and influence brain development: implications for clinical practice derived from studies on choline metabolism.

One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to, nutrients. These SNPs can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2011